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A B S T R A C T  

A cascade concept i s  introduced. I t  decomposes a ve loc i ty  f luc tua t ion  

i n t o  a group of modes of la rge  scales and a group of modes of smaller  gcales. 

The mutual i n t e r a c t i o n  is  responsible  f o r  the  t r a n s f e r  of energy acrosq the  

spectrum. 

closure of t h e  hierarchy of equations common t o  nonl inear  systems. 

eTpression f o r  t h e  eddy v i s c o s i t y  i s  obtained, d i f f e r i n g  from t h a t  proposed 

by Heisenberg. I t  has the  advantage of determining the.  Kolmogoroff.Jaw;ip 

t h e  i n e r t i a l  subrange with an ana ly t i ca l  numerical coe f f i c i en t ,  and of  cal- 

cu la t ing  the  s p e c t r a l  law i n  t h e  viscous subrange. 

cu tof f  i n  t h e  spectrum and thqnefore secures the  convergence of any high order  

ve loc i ty  de r iva t ive .  The cu tof f  follows t h e  viscous subrange, and does not 

Eollow t h e  i n e r t i a l  law, as predicted by some theo r i e s .  

The concept of cascade has the  purpose of  providing a mean of 

A new 

The l a t t e r  law provides a 
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1. I N T R O D U C T I O N  

In the equilibrium range, the developrpent of the spectral distribution 

energy F(k) can be described by the following equatian: 

where v is the molecular kinematic viscosity, 

is the vorticity function, and vR is the dissipation function. 

is the total energy dissipation 

Furthqr 1 .  E 
0 

Finally S(k) i s  the transfer function arising from the nonlinearity, and 

describing the flux of energy across the spectrum, i.e. the rate at which 

the portion of the spectrum with wave number less than k trangfers energy tQ 

the remainder of the spectrum. By definition 

-r 

this means that the nonlinear interactions transfer energy between Fourier 

components without dissipating energy. The determination of the structure 

of the transfer function is the crucial aim of any spectral theory of tprbu- 

lence. There are the following phenomenological theories: 

(i) Hsisenberg1s1'2 theory takes 

where 
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'W. Heisenberg, 7.  Physik - 124, 628 (1948) 

*W. Heisenberg, Proc. Roy. SOC. (London) - 195, 503 (1948). 
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is an eddy viscosity. 

3 (ii) Obukhov’s theory postulates 

- 1  

(iii) Pao 4 and ~ovasznayls’ theory proposes s =  c . w P t & t ( f  f 277 k @+)+ 

4 5 6 Pao uses n = 1, and Kovasznay uses n = 3 /2 .  Tennekes notes that the c w e  

n = 3/4 gives the Heisenberg”’ law k-7 in the viscous subrange. 

The theories (i) and (ii) are based on the idea that th’e $mall eddies 

act like an eddy viscosity on the big eddies. The Fheary (iii] has no simple 

physical analogue. 
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'A. M .  Obukhov, C . R .  Acad. Sc i .  USSR - 32, 19 (1941); Izv ,  Akad, Nauk, USSR, 

Ser. Geogr. i. Geofiz. - 5,  453 (1941), ( t r ans l a t ion  issued by MiniFtry gf 

Supply, United Kingdom, as P21109T) 

4Y. H. Pao, Phys. Fluids - 8, 1063 (1965). 

'L. S. G .  Kovasznay, J .  Aeron Sc i .  - 15, 745 (1948). 

Tennekes,Phys. Fluids  11, 246 (1968). - 
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- 5 / 3  in the inertial law of k 7 All the 3 theories agree with the Kolmogoroff 
7 subrange, as required by dimensional conditions. The Kolrnogoroff law is also 

10 
confirmed by O n ~ a g e r ~ ’ ~  and von Weizsacker . 

As mentioned above, the solution k-7 of Heisenberg1’2 bears the difficulty 

of a divergence in the mean square velocity derivatives of arbitrarily high 

orders. solution finds an exponential decay as a fail following the 

k-5/3 inertial law. 

4 Pao’s 

The exponential cutoff is a superior chgice, but one 

rather expects That a cutoff should be attached to the viscous law. The 

4’3) rather than exp exponential tail predicted by Pao varies as exp (-k 

(-k ), as suggested by Batchelor’’, Saffman” and Novikpv In supplementing 

the above phenomenological theories, several physical models 13’14’15 have been 

4 

2 13 
, 

advanced attempting the formulation of a dynamics oE the interactions. The 

theories are confronted with several difficult questions : 

(a) To devise an approximation of closure of the hierarGhy of equations 

inherent in any nonlinear system. 

[b) To formulate the dynamics of interactions between the modes, 

and to derive the transfer function. 

(c) To derive the structure of the eddy viscosity, as a trgnsport 

property representing the statistical effect of fluctyations of small scales 

upon larger ones. 

(d) To derive the inertial and viscous laws as solutions of the 

equation of energy spectrum. 

(e) To show the existence of an exponential tail, arising from the 

viscous cutoff of the spectrum at infinitely large wave numbers. 

If those fundamental questions, which enter in the physical madels, 

cannot find their answers from the phenomenological theories (i) - (iii), 
the recent analytical theories of turbulence can also not lend, much help. 
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7A. N .  Kolmogoroff, C .  R .  Acad. Sc i .  USSR - 30, 301 (1941). 

8L. Onsager, Phys. Rev. c 68, 286 (1945). 

'L. Onsager, Nuovo Cimento Suppl. - 6, 279 (1949). 

'*C. F .  von Weizszcker, Z .  Physik - 124, 614 (1948). 

"G. K .  Batchelor, J .  Fluid Mech. - 9 ,  113 (19S9). 

'*P. G .  Saffman, J .  Fluid Mech. - 16, 546 (1963). 

"E. A.  Novikov, Dokl. Akad. Nauk USSR 1 139, $51 (1961) [Soy. Pbys 

- 6, 571 (1961)l. 

13C.  E .  Leith,  Phys. Fluid c 10, 1409 (1967). 

14C.  E .  Lei th ,  Phys. Fluid 11, 1612 (1968). 

15E.  N .  Parker, Phys. Fluid - 1 2 ,  1592 (1969). 

Dsklady 
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In a recent survey of such theories, Orszag" commeqted that they are based on 

mosfly unsatisfactory closure approximatipns, and therefore often fail t o  

predict even a proper Kolmogoroff 7 inertial range speetrvm. The extensiqn of 

these theDries to more complicate types of turbulence, e,g. plasma turbulenqe 

and magnetohydrodynamic turbulence will involve even greater difficulties. 
On the other hand, the dimensional considerations upon which all the phenomeno- 

logical theories are based, are too ambiguous tq be fruitfpl for any such 

extension. Therefore we propose a new cascade approximation, which provides 

a simple closure procedure in the interaction of mode?, without the mathewatical 

involvement of most analytical theories, and, at the same time, can describe in 

sufficient detail the dynamics of the nonlinear transfer prpcess. The transfer 

function thus determined entails a viscous cutoff a t  arbitrarily large wgve 

numbers of the spectrum . Let us review the basic questions to be emphagized: 

The question (a) of introducing the cascade approximation as 8 basig of closure 

is discussed in Sections 2 and 3 ,  and the question (b) of formulating the 

transfer function i s  treated in Section 4. The questioq (c) on the structvre 

of the eddy viscosity needs again a closure bgsed upon thq Cascq.de concept and 

is treated in Sections 5 and 6 .  The questions (d) and (e) on the solutions of 

the spectral laws are discussed in Sections 7 9nd 8 .  

spectrum has a cutoff which is derived in Section 8 .  

the present cascade theory with other theories is made in Section 9. 

The viscous tail of  the 

Finally a comparison of 

2. CASCADE DECOMPOSITION 

Consider an incompressible turbulent fluid, and assume it t9 be homagene? 

ous and isotropic. 

u and pressure p with a constant density p are the equation of Navier - Stokes 

and the equation of continuity: 

The dynamical equations governing th9 variable velocity 

tv 
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16Stevens A. Orszag, Some Insights into the Anafytical Theories of Turbulence, 

in Abstrqct Symposium on Turbulenqe, Seattle, Washington, 23-27 June 1969, 

Boeing Scientific Research Lab. Document DI-82-853, p V1. ed. Yih-Ho Fao. 
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where v’is the  kinematic v i scos i ty ,  and 
a d -  - -  3- u . v  

e ott a t  
Instead of studying the  evqlution of individual  Faurier plodes of /b u and 

p, which would call  f o r  more infprmation than i s  needed i n  the study of t he  

energy spec t r a l  d i s t r i b u t i o n ,  we bunch the modes i n t o  two groups for the  sake 

of s impl ic i ty ,  ,and write 

with 

A s  k is  taken as an independent var iab le  i n  the  fupct ian UE), i t  remains an 

independent v a r i a b l e  i n  the  new functions uo ‘and 3 which $imply repTeseqt I 
NL 

c e r t a i n  sums of u (k ) .  The in tegra t ions  
wn, Lk& rv . . ’  +wl?L 4% ’ * *  

denote volume i n t e g r a l s  i n  t h e  wave number space, within and outs ide a sphere 

of  radius  k respec t ive ly .  The same notat ibps are v a l j d  for p ,  
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It is to be noted thal; (2b) and ( 2 ~ )  cgn alqo be written as 

where uo(k) and u'(k,, retain the values of u(k) but truscatwl in the appro- 

priate fashion as indicated by (2b) and (2c). 

4 - 0  N W N  

A s  a result of such bunchinga, we eypect t$pt ceptaiv IntrinskG w e w g -  

ing o r  randomnization will shape vp a prwess wivh is m w e  ctharactea)stic 

and distinct statistical behavior, which 4s mpre suitable far physicat apprbxima- 

tions. More specifically, we expect that the equafioq dotermiming will 

provide the evolution1 of the portiqn ~f the energy 3PWlfTW Fik}  bePwegn 0 and 

0 

while the equation for u will determine the transport properties of the 

medium in which 3 evolves. 
v 

0 

3,. BASIC ASSUMPTIONS 

We list the following assumptians: 

(i) The fluid is incompyesqible. 

geneity f o r  the quantities kand, $, sjvce there exists n9 motion of larger 

scales which may alter these conditions. qf smaller scales, 

we assume that withip the length of such small scale fluctyaticw, ?ha motion 

is statistically homogenews, i,e. obeying The cmdition pf local hQqqgepeity. 

We apply the CoQditions o f  isQtropy and hqmp7 

I 

Fqr the motign u 
P 
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(ii) The large scale vFlocity u' uayieq very slawly cpmpayed t;o the 

4' 

N 

rapidly varying smaller scale fluctuatioq u' 

length scale comparable to h / k ,  (k = q variable wave number sepgrpting the two 

motions), will not alter uu but will elimipate g: 

so that an average within a 

4, 

- Q 
(33 

where the angular brackets denote such an averqge. 

quasi-stationary conditioq, 

This is referred tg a$ the 

(iii) The time development of the small scale mation u t  will depend 
Y 

0 
on its interaction with the larger scale notion u under the  Eorp of a 9hgar. 

Under the BQussinesq approximation, it i s  assumyd That such qn interaction plays 

a dominant role in the devslopmenf of ~~,pnirbling u$ fo neglect the effect, of 

pressure fluctuation Vp' which pnesgly TandgvnpiFes the eeeqgy in a l l  direcqions. 

Y 

1 

(iv) It is known that a nonlinear system descrlbiqg 9 velocity u 

a hierarchy of equaZiens, and that it? solufiam necesgitates an 
Y 

generates 

assumption of closure. Consequently, when the vqlocjty 3 i s  da(;opposed into $' 
and u' as in (Za), there entails a nanliqearity in bpth, the eqyatipq for and 

u'. 
4 

The Condition (i) of a homogeneous $ helps in closing thg hierarqhy in 
?I 

0 ; but since uo apd st are coupled, iq is necessary to qlosure the hierarchy u^/ rd 

generated by the nonlinegrity i q  &' too. 

role of  the streaming velocity u* in the L,agrangi@n integratiqn of a fluiql elepent 

The latter wmlfnearity vises frov the 

of velocity ut. 

in terms of a spectral fumctian withouf its qeterminatiop $hlrqpgh a.higher order 

equation, then the closure is achieved. 

If such a streaming ve1oGit;y p* car) bq fiixplicitlr expyegseq 
h, 
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The assumptions (i) and (ii) are generally adopted in tht; study of 

an isotropic and homogeneous turbulence. 

in the Burgers'" model. 

securing the closures. 

The assumpfioq (iii) i s  also used 

The qsswption ( iv)  is  new and is fundamental to 

4. STRUCTURE OF THE TRANSFER FUNCTION, AND BERIVATIQN OF TW EQUATION FOR THF 

SPECTRAL DISTRIBUTION 

By applying the average, as defined by ( 3 ) ,  to (1) anq using the notg- 
-7 tions (2 ) ,  we obtain anL eqvation for k: and hence uo , 

traction of such an equation Ecq s9 fram (1) will yield qn eqvaqion for ut. 

Thus we write them as follows: 

A pbseqvent sub7 w 

Y 

and 

where 

R ' - ( j a k : / b f ) ,  - p e"+@. is a vorticity function. Sipilaaly 

The coefficient CY, will be detemined approxiqately $p the followipg lines. 

According to tbe Meisenberg" hypothesis the equatjpn foy the engrgy 

dissipation (4) cav be written as 
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l7 J ~ M. purgers, in Advances in Apal%,ed MechaniCp , 8 ,  Yon Mises apd Th. 

Von K6rma'n. Eds. (Academic Press Iqc, , New Yank, 1948) W91, 1, .p. 171. 
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or 

I t  follows 

I t  d -<s2> oacurs a t  4 Z.esqsr rake than vR I 2 We see  t h a t  t h e  d i s s i p a t i o n  of 

i . e ,  a t  a ra te  f - 'V  with f i  3 I .  We theq have 

where 

is  t h e  damping c o e f f i c i e n t  i n  ( 5 ) ,  qnd 

approximated as a constant ,  will be e:sFPmated in $ect$on 8 ,  

In (4), we have int;raducbd thp bar 9s q average t a k e s  ~ y p r  B laqgth 

tending t o  i n f i n i t y ,  as d i f f e r e n t i a t e d  5rom The avey8ge (3) ZgFqn Qver a length 

scale 2 1 ~ / k .  We have neglected the  terms 



As a result of the assumption (i) op komqgeneity. 

In arriving at (S), we have negleated toe term 46'. v)%'> 
under the quasi-stationary assvmption (ii), but retained the ngnlinear tern 

(%/.v) 5 
effect under the assumption (iii) sF Bou$$inesq gppsoximqtion, ant# adopted 

the approximate damping($ in (5) and (7a). 

I 
embedded in d/dt. In additisn? we have neglected Vhe pr~ssure 

The completed system pf equations (4) and (SI &re nonlinear. It is 
seen that the development of the energy 7%' v-7 i s  governed by g viscous ql isai? 

pation vRo in (4), and by an eddy dissipsoion cawed by $ h ~  Fmaller sqale 

fluctuations playing the role  of a shear stress <&:..I.> , 

The motions u' and u' are coupled through (S), in agreeveqt: with the concept 

of mixing by turbulent shear, initiated by B9uqsin9s,q, 

d 

N 4 

As a solution of (5), we fiod 

assuming a Q 'd /> x 

In (8) we have written 

to be quasi-statiqnary, aceprqing t q  q,gsumptiqn (ii). d' 
X I =  5- LC(b-t'), and the inqegratigp i s  Fade alon4 
cu ry 

the trajectory of the small scale eJemsnt u t ,  whi9.h. is traqspartad by 

(8) it follows 

From 
%.d 
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Since the duration of the correJation i s  small, we cqn rpptace $he upper limit 

of  integration by m, without altqring the value? p f  the integrals. FuyTher 

therefore we can write for large t: 

where 
3 x 3  

k 

is an eddy viscosity from small Scale fluctuatiops. gqVqtip,s (9aj is p relqti~n 

between the fluctuation and, the Gradlent ~f the bqckgysund lgrgqr sc;a$e flow, 

through the intermediary of sp eddy vi$cog,itX. This result i s  iq agreement 

with the Boussinesq's mixing length theory, 

Finally upon substitut$ng@q) into ( A ) ,  wq rpdu$:e, ($) t o  

> -  - 2  . r C  
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with the aid of assumption of homcngeneity ( 4 ) .  

We consider w w  the equilibFiuq range 

range valid for large wave numbers, the term 

the fiqacfrwn F ( k ) ,  Ip t h i s  

is very small, therefore, 

reducing (10) to 

an equation similar to The equgtion $11) propnsed by Meispnbqrg . 

5. RELATION BETWEEN THE SPECTRUM AND THFl POURJqR CoMFC)Mer)lT$ OF VF;&WfT!Es 

We write the Fourier tsaqsform in the space dJ2 (H 6 dct,d& 



Noting that 

and similarly for the Space intqreFll we t , r t $ p f ~ ~  (12) t o  

degenerating to the Fgrsqval thearp when T - 0 ,  

For the sake ~f convenipncq of Fwrier qrassfprp, the funqtjan N LC(6:) 
is supposed to be boynqled witkiq 8 time iptegnal. ?T q q i  B length iptegaal 

2X, called intervals of trvnqatiqn, y i t h  

then (13) can be rewritten as 

where the bar represents a tima avelrqge and a space average brith$n the a b w e  

intervals of truncation. With the specisl ease a f  T 9 0, wg Feduce tg 
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where 

-19 

6. EDDY VISCOSITY 

In  a l l  the  theor ies  reviewed 4s Se~tjon 1, t h e  pffisct of  v ~ s c o u $  

damping does not enter i n  the  eddy v iscos i fy .  

s h a l l  ipclude such an e f f e c t  i n  the  qlerivatjpn af fhe eddy v iscoqi ty ,  aq it 

Ip t he  presenq Section, we 

is  important a t  la rge  wave number? and i s  tsxpecwd t p  play a* qbsential ro le  

i n  the  convergence of the  spe~tsum. 

With the  a i d  9f (141, apd Qn a(;coune  DE the w a n  vaZw ~ j 3  the 

integrand, we can rewr i te  (Qb) as 



where p = cos 0 in the spherical palar wordinatps &, 8, Cp . 
We shall first perfqrm the integration wit$? Tespec8 t o  p, giving 

with 

-- L* k 
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Upon inspecting (17a), we nqtiqe that the damping f8cTor y& oy/oc) 
becomes a unit function far d =O : 

1, +JY cc,cu+ 

d = O  + es3a* 
/ 

thus St s,elects.the contributions from $he low frequevcies IJ(d*? and 

decreases monotonously with ipcreasiqg o( . Hqwe (17a) and (18g) simplify to 

It is to be remarked that thq mu+tiples of  IT/^ i q  the hnc&(@) ?re qot 

taken in order to Conform tbe value unity of (llb) tp its equivalent 

when a = 0. 

In viey of the property ~ftaeleqting low fwqueqcies, i n  the Lagraygian 

time integration as mentioned aboye, we cap siqplify (16) to 



where ku is replaced by d a r y i q g  slow$y in time. $t is to be npted thgt &)* 

still depends on k and F. 

Since is truncpted, we can further write 

Although the relatiw between 4 and k form a dif;SiC;Mlt nonlinear 

dispersion relatioq, worthy of a separate study, $2; i s  qafc; tq aqspne that 

the frequency is contributed by the conveution ~f a scale k by a speam$ng 
velocity u*, so that the integral 

& 
[ d c d  " 

0 

may encompass the major frequency centributions, Thps yi$bout mych erqr, 

we can replace the upper integration limit by m +  giving 

with the use of representation [IS). 

viscous damping resides in , a3 given by (17b). 
It is to be rscafled that the effect of the 

)D 
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b) Relaxation Frequency a" 
The relaxation frequency determings the time necessary for the energy 

Fdk between k and k * dk to relax and dissipate through the FQrresponding 

vorticity 2k Fdk. 2 Thus we can write, i n  analogy to (lo), 

By neglecting the effeqt of the molecular viqcosity and with the use of 

(18c), we can transform (20) into 

yielding the solution 

Thus the streaming velocity respansible for the conveqtion of the eddies of 

wave number k in a strong interaction depend? an the local behavior characterized 

by F and 4. The dynamics represented by [20), which describes such an inter- 

action, is again based on a casc8.de concept, similar to that used in (10). 

7. KOLMOGQROFF SOLUTION OF THE SPECTRAL DISTRIBUTION 

In the inertial subrange we can, neglect vc<#, i n  (113, and qpproximate 

the damping factor 

equation 

to unity in (18~)~so that (11) simplifies $0 the integral 
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* with Cd. given by (21), yielding the solutiop 

with 

Although the integral equation (22) differs from that progcped gy Hqisenberg”’, 

obtained in (23a) is in agreement w+Th the Kolmagoroff7 -5/3 the power law k 

and Heisenberg” theories. The paesevt theory derives the transfer function 

without the empirical and dimessional arguments, and detgrmines the numerical 

coefficient (23b), 

8.  TAIL  OF THE VISCOUS SUBRANGE 

In order to obtain a solution of (11) in the viscous subrange, we 

differentiate (11) with respect to k giving 

Since the viscous subrange occurs at large k ,  we aan replace R 

R = Ro(  44 ~0 ) ,  and neglect $<< 9 reducing the differential equation to 

by 0 
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or,in terms of F ,  with t h e  a i d  Q f  1.37b), (1803 and (213, 

where is  a cutoff funct ion given by (17b) 

Assume a so lu t iQn  

with 

The so lu t ion  

satisfies the  equatioq (24) dhen  $" i s  unt ty ,  and? is  a dimensianaless 

funct ion of k/kv,  t o  be  determined by the  in tegraJ  equation (343, which 

reduces t o  

-27- 



Now by using (7),  (21)  and (241, we f ind  

which reduces (17b) t o  

Qr inversely 

Upon d i f f e r e n t i a t i n g  with k ,  we hgve 

For k/kv> 1, the  termJbetween the  brackets are negl ig ib le ,  gimpl$fying t o  

-28- 



yielding the solution 

Hence (25) becomes 

If 0 . 5 k  is the wave number of transitiqn From the jnertial, to the 

viscous subranges", the exponential cutogf is effective at a wave nwber 
v 

larger than k since 6 > 1. Hence we conclude that the viscpsity effect 

in the expression (18c) f o r  the eddy wisposity will provide a cut~ff sf the 
V Y  

spectrum at large k .  

The exponential tail of (27) secures the wnyergence of W Y  high 

order velocity derivative. 

k-7 of the Meisenberg'" solution, 

Such a convergence wq,s absent in the power Jaw 

For small k ,  the value of  B is nearly unity, We shall make an estimate 

and according tQ (21) and (25 )  

ip' R 
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18J. 0. Hinze, Turbulence (McGraw-Hi11 Book company, Inc., New York, 1959), 

Chap. 3, p. 195, formula (3-128). 
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Hence f o r  k + kv + 

Thus the  cutoff  occurs a t  k d  ($/3]1’4kv. 

9. COMPARISON WITH OTHER THEORIES 

a. The present  cascade model y i e l d s  an squaTioq (10) f g r  t he  dgvslopment 

of the  spec t r a l  d i s t r ibu t iq- i ,  t h e  equation i s  similar t o  t h a t  proposed, by 

Heisenberg”*. However, t he  eddy v iscoqt ty  is  deyived i n  (TSc) and (211, 

and takes  a form a t  variance w i t h  t he  onp prpposqd by MpiqenbeygILi! op g 

dimensional argument. The equation (10) y ie lds  a ?qlut$an (23q) $or qqe 

i n e r t i a l  subrange, and a s o l u t i o n  (27)  f o r  the viscous gubrange. 

law i n  (23a) i s  i n  agreement with the  K o l m o g o r ~ f f ~  r HeisenberG1’2 sppctrum, 

The power 

The numerical constant (23b) is  derived. The Y ~ S C Q U S  law 1273 has t h e  

appearance of Heisenberg’ql’* law, but  we f i n d  an qqpp?qnt$al cu tof f  k-7 a t  

k = 1 . 3  k v .  

suggested by severa l  

law, as - 5 / 3  The cu tof f  does not follow i w e d i a t s l y  t h e  k 

If the viscous dyop occurs at k = 0.F k d v ,  

t he re  must e x i s t  a narrow range 

i . e .  

0.9 f 4 

law should hold. 1,2 k-7  within which Heisenberg’s 

-31- 



The formula (27)  gives also the numerical aoeffic$@n$ which, wa6 $eft  undpter7 

mined in the Meisenberg' ' * theory. 
b. The eddy viscosity (18~) depends qn the re$wa$ion fr@qWwy a) P * 

The latter has the s a w  dimension as Rol'*. I% we spproxipnatx (18G) by 

without altering the dimensional stlructure, then the equation (14) Ear 

the spectral equation reduces to 

3 7 which is equivalent to the Obvkbov equafian, yJel8ipg alqs fbe KQhIlOgOTQff 

law in the inertial svbrange. 

by the cascade concept descylbed by (20): cpq~sqy~qtl.~ i t  i s  &e t o  Thp 

convection of a small scale motion by a streaming valoc,ity ulj g e t  pp by 4 

local cascade, in the sense that a ptrong InteraQtiqn srbspld opsrqtq betweep 

the two scales. 

interaction, so that the streaming velocity uk.daes not depend on the local casr 

cade, but is a measure of the Strength of tvrbuleqae qt laxge. 

a circumstance, (18c) approximates tc? 

Instead of such a strong i?$eraqf$oq, we may @skume a, wesk 

Up+p svch 
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reducing (10) t o :  

Its so lu t ion  f o r  t he  i n e r t i a l  subrange i s  

and is  found t o  be equivalent  t o  t h e  r e s u l t  of KraichnanlS, vsiqg t h e  approxi- 

mation of  s t o c h a s t i c  d i r e c t  i n t e r a c t i o n .  

The method does not give a so lu t ion  Eor the viscpus subnange. 
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